มาตรฐานผลิตภัณฑ์อุตสาหกรรม THAI INDUSTRIAL STANDARD มอก. 416 – 2548 IEC 60085 (2004 – 06) # ฉนวนใฟฟ้า – การจัดประเภททางความร้อน ELECTRICAL INSULATION - THERMAL CLASSIFICATION สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม # มาตรฐานผลิตภัณฑ์อุตสาหกรรม ฉนวนไฟฟ้า – การจัดประเภททางความร้อน มอก. 416 - 2548 สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม กระทรวงอุตสาหกรรม ถนนพระรามที่ 6 กรุงเทพ 10400 โทรศัพท์ 0 2202 3300 ประกาศในราชกิจจานุเบกษา ฉบับประกาศและงานทั่วไป เล่ม 122 ตอนที่ 77ง วันที่ 22 กันยายน พุทธศักราช 2548 # คณะกรรมการวิชาการคณะที่ 306 มาตรฐานผลิตภัณฑ์อุตสาหกรรมประเภทวัสดุฉนวนไฟฟ้า # ประธานกรรมการ ผศ.เชื่อน อินทรสุวรรณ สมาคมวิศวกรรมสถานแห่งประเทศไทยในพระบรมราชูปถัมภ์ กรรมการ นายชาญณรงค์ บาลมงคล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย รศ.เข็มชัย เหมะจันทร สมาคมวิทยาศาสตร์แห่งประเทศไทย ในพระบรมราชูปถัมภ์ นายสำเร็จ อายุพงศ์ สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย นายสุกิจ เกียรติบุญศรี การไฟฟ้านครหลวง นายปัญญา เวชปรีชา การไฟฟ้าส่วนภูมิภาค นายโชติศักดิ์ ธนะภูมิ การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย นายธนสิทธิ์ อังกสิทธิ์ บริษัท จรุงไทยไวร์แอนด์เคเบิ้ล จำกัด นายวินิจ พันธ์พานิช บริษัท ไทยพลาสติกและเคมีภัณฑ์ จำกัด กรรมการและเลขานุการ นายกฤษฎา ทิณวัฒน์ สำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรม มาตรฐานผลิตภัณฑ์อุตสาหกรรมฉนวนไฟฟ้า-การจัดประภททางความร้อน นี้ ได้ประกาศใช้ครั้งแรกเป็นมาตรฐาน ผลิตภัณฑ์อุตสาหกรรมการจัดประเภทของวัสดุฉนวนไฟฟ้า มาตรฐานเลขที่ มอก.416-2525 ในราชกิจจานุเบกษา ฉบับพิเศษ เล่ม 99 ตอนที่ 77 วันที่ 4 มิถุนายน พุทธศักราช 2525 ต่อมาได้พิจารณาเห็นควรแก้ไขปรับปรุงเพื่อ ให้ทันสมัยและสอดคล้องกับมาตรฐานอ้างอิงฉบับล่าสุด จึงได้แก้ไขปรับปรุงโดยยกเลิกมาตรฐานเดิมและกำหนด มาตรฐานนี้ขึ้นใหม่ มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้กำหนดขึ้นโดยรับ IEC 60085 (2004-06) Electrical insulation - Thermal classification มาใช้ในระดับเหมือนกันทุกประการ (identical) โดยใช้ IEC ฉบับภาษาอังกฤษเป็นหลัก มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้กำหนดขึ้นเพื่อใช้ในการอ้างอิง และเพื่อให้ทันกับความต้องการของผู้ใช้มาตรฐาน ซึ่งจะได้แปลเป็นภาษาไทยในโอกาสอันสมควรต่อไป หากมีข้อสงสัยโปรดติดต่อสอบถามสำนักงานมาตรฐานผลิตภัณฑ์ อุตสาหกรรม คณะกรรมการมาตรฐานผลิตภัณฑ์อุตสาหกรรมได้พิจารณามาตรฐานนี้แล้ว เห็นสมควรเสนอรัฐมนตรีประกาศตาม มาตรา 15 แห่งพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม พ.ศ. 2511 # ประกาศกระทรวงอุตสาหกรรม ฉบับที่ 3344 (พ.ศ. 2548) ออกตามความในพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม พ.ศ. 2511 เรื่อง ยกเลิกมาตรฐานผลิตภัณฑ์อุตสาหกรรม การจัดประเภทของวัสดุฉนวนไฟฟ้า และกำหนดมาตรฐานผลิตภัณฑ์อุตสาหกรรม ฉนวนไฟฟ้า–การจัดประเภททางความร้อน โดยที่เป็นการสมควรปรับปรุงมาตรฐานผลิตภัณฑ์อุตสาหกรรม การจัดประเภทของวัสดุฉนวนไฟฟ้า มาตรฐานเลขที่ มอก. 416-2525 อาศัยอำนาจตามความในมาตรา 15 แห่งพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม พ.ศ. 2511 รัฐมนตรีว่าการกระทรวงอุตสาหกรรมออกประกาศยกเลิกประกาศกระทรวงอุตสาหกรรมฉบับที่ 594 (พ.ศ.2525) ออกตามความในพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม พ.ศ. 2511 เรื่อง กำหนดมาตรฐานผลิตภัณฑ์ อุตสาหกรรม การจัดประเภทของวัสดุฉนวนไฟฟ้า ลงวันที่ 18 พฤษภาคม พ.ศ. 2525 และออกประกาศกำหนด มาตรฐานผลิตภัณฑ์อุตสาหกรรม ฉนวนไฟฟ้า-การจัดประเภททางความร้อน มาตรฐานเลขที่ มอก. 416-2548 ขึ้นใหม่ ดังมีรายละเอียดต่อท้ายประกาศนี้ ทั้งนี้ ให้มีผลตั้งแต่วันที่ประกาศในราชกิจจานุเบกษา เป็นต้นไป ประกาศ ณ วันที่ 19 พฤษภาคม พ.ศ. 2548 วัฒนา เมืองสุข รัฐมนตรีว่าการกระทรวงอุตสาหกรรม # มาตรฐานผลิตภัณฑ์อุตสาหกรรม ฉนวนไฟฟ้า – การจัดประเภททางความร้อน มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้กำหนดขึ้นโดยรับ IEC 60085 (2004-06) Electrical insulation – Thermal classification มาใช้ในระดับเหมือนกันทุกประการ (identical) โดยใช้ IEC ฉบับภาษาอังกฤษเป็นหลัก มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้ให้แนวทางในการกำหนดประเภททางความร้อนให้แก่วัสดุฉนวนไฟฟ้าหรือวัสดุ ดังกล่าวที่ประกอบกันอย่างง่าย (IEC 60216-1) และระบบฉนวนไฟฟ้า (IEC 62114) รวมทั้งฉนวนของอุปกรณ์ ไฟฟ้า รายละเอียดให้เป็นไปตาม IEC 60085 (2004-06) ### INTERNATIONAL ELECTROTECHNICAL COMMISSION ## ELECTRICAL INSULATION -THERMAL CLASSIFICATION #### **FOREWORD** - _1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, !EC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 60085 has been prepared by subcommittee 15E: Methods of test, of IEC technical committee 15: Insulating materials. This third edition cancels and replaces the second edition, published in 1984, and constitutes a technical revision. This new edition distinguishes between thermal classes for electrical insulation systems and electrical insulating materials. The text of this standard is based on the following documents: | FDIS | Report on voting | | |--------------|------------------|--| | 15E/232/FDIS | 15E/237/RVD | | — Full information on the voting for the approval of this standard can be found in the report on — voting Indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be - · reconfirmed, - withdrawn, - · replaced by a revised edition, or - amended. # ELECTRICAL INSULATION --THERMAL CLASSIFICATION ## 1 Scope This standard gives guidance on the application of international standards in assigning a thermal class to electrical insulating materials (EIM) or simple combinations of such materials (IEC 60216-1), to electrical insulation systems (IEC 62114) and to insulation for electrical _ devices. ### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60216-1, Electrical Insulating materials - Properties of thermal endurance - Part 1: Ageing procedures and evaluation of test results IEC 60216-5. Electrical insulating materials – Thermal endurance properties – Part 5: Determination of relative thermal endurance index (RTE) of an insulating material IEC 60216-6, Electrical insulating materials – Thermal endurance properties – Part 6: Determination of thermal endurance indices (TI and RTE) of an insulating material using the fixed time frame method IEC 61857-1, Electrical insulation systems – Procedures for thermal evaluation – Part 1: General requirements – Low-voltage IEC 62114, Electrical insulation systems - Thermal classification ## 3 Terms and definitions For the purposes of this document, the following terms and definitions apply: #### 3.1 # electrical insulating material solid with negligibly low electric conductivity, or a simple combination of such materials, used _ to separate conducting parts at different electrical potential in electrical devices NOTE 1 In English, the term "insulating material" is sometimes used in a broader sense to designate also insulating liquids and gases. NOTE 2 For testing purposes, electrodes may be applied on material specimens without this combination formally constituting an EIS to be tested as such. #### 3.2 # simple combination of electrical insulating materials combination of EIM delivered in joint state for production of devices NOTE For example a flexible material consisting of paper laminated on polyethylene terephthalate film (IEC 60626) constitutes a "simple combination" in this sense. EIMs combined during the manufacturing process of a device do not constitute "simple combinations" in this sense. #### 3 3 #### electrical insulation system EIS _ insulating structure containing one or more electrical insulating materials (EIMs) together with _ associated conducting parts employed in an electrotechnical device #### 3.4 #### thermal class designation of an EIM/EIS equal to the numerical value of the maximum used temperature in degrees Celsius for which the EIM/EIS is appropriate NOTE It may be necessary to assign different thermal classes to the same EIM/EIS for different service conditions. The description of an electrotechnical product as being of a particular thermal class does not mean, and must not be taken to imply that each insulating material used in its construction is of the same thermal capability. #### 3.5 #### relative thermal endurance index #### RTE numerical value of the temperature in degrees Celsius at which the estimated time to endpoint of the candidate material is the same as the estimated time to endpoint of the control material at a temperature equal to its assessed thermal endurance (ATE) #### 3.6 # assessed thermal endurance Index #### ATE numerical value of the temperature in degrees Celsius, up to which the control material possesses known, satisfactory service performance in the specified application - NOTE 1 The value of the ATE may vary between applications for the same material. - NOTE 2 Sometimes referred to as "absolute" thermal endurance index. #### 3.7 #### candidate material material for which an estimate of the thermal endurance is required to be determined NOTE The determination is made by simultaneous thermal ageing of the material and a control material. #### 3.8 #### control material material with known thermal endurance, preferably derived from service experience, used for comparative tests with the candidate material # 4 Thermal endurance evaluation and classification _The thermal classification for insulation materials cannot be applied to an insulation system of _ which they are components, unless the validity thereof is proved. Vice versa, the thermal classification of a material cannot be deduced from the thermal class of an insulating system of which it is a component. # 4.1 Electrical insulating materials (EIM) Electrical insulating materials and simple combinations of insulating materials shall be evaluated in accordance with IEC 60216-5 or IEC 60216-6 and refer to expected service conditions. ## 4.2 Electrical insulation systems (EIS) Electrical insulation systems shall be evaluated in accordance with IEC 61857-1 and _ classified in accordance with IEC 62114. #### 5 Thermal class Since the temperature in electrotechnical devices is very often the dominant ageing factor affecting electrical insulating materials, certain basic thermal classes are useful and are recognized as such internationally. Where a thermal class is specified for an electrical insulating material, this means the maximum used temperature in degrees Celsius for which the EIM is appropriate. Table 1 - Thermal classification of electrical insulating materials | RTE | Thermal class | Previous designation | |----------|---------------|----------------------| | < 90 | . 70 | | | >90-105 | 90 | Y | | >105-120 | 105 | A | | >120-130 | 120 | E | | >130-155 | 130 | В | | >155-180 | 155 | F | | >180-200 | 180 | Н | | >200-220 | 200 | | | >220-250 | 220 | | | >250 | 250 | | NOTE This table gives the thermal class designations corresponding to different temperature intervals of the RTE for an EIM. The capital letters in the 3rd row refer to the class designations in the earlier edition of IEC 60085 (1984). The designation "Y" applies also to RTE values below 90. _The thermal class attributed to a material used in an insulation system does not automatically imply that the thermal class of the system is the same as for that material, or for the material with the lowest class designation in case more than one material with different class designations are used in the system. # **Bibliography** IEC 60093, Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials _ IEC 60216-2, Electrical insulating materials - Thermal endurance properties - Part 2: Gulde for _ the determination of thermal endurance properties of electrical Insulating materials - Choice of test criteria 1 IEC 60216-3, Electrical Insulating materials — Thermal endurance properties — Part 3: Instructions for calculating thermal endurance characteristics IEC 60243-1, Electrical strength of insulating materials - Test methods - Part 1: Tests at power frequencies IEC 60243-2, Electrical strength of insulating materials – Test methods – Part 2: Additional requirements for tests using direct voltage IEC 60243-3, Electrical strength of insulating materials – Test methods – Part 3: Additional requirements for 1,2/50 μs impulse tests IEC 60250, Recommended methods for the determination of the permittivity and dielectric dissipation factor of electrical Insulating materials at power, audio and radio frequencies including metre wavelengths IEC 60345, Method of test for electrical resistance and resistivity of insulating materials at elevated temperatures IEC 60377-1, Methods for the determination of the dielectric properties of insulating materials at frequencies above 300 MHz – Part 1: General IEC 60377-2, Methods for the determination of the dielectric properties of insulating materials at frequencies above 300 MHz - Part 2: Resonance methods IEC 60626-1, Combined flexible materials for electrical insulation – Part 1: Definitions and general requirements IEC 60626-2, Combined flexible materials for electrical insulation - Part 2: Methods of test IEC 60626-3, Combined flexible materials for electrical insulation – Part 3: Specifications for individual materials IEC 61006, Electrical insulating materials – Methods of test for the determination of the glass transition temperature IEC 61074, Determination of heats and temperatures of melting and crystallization of ______ electrically insulating materials by differential scanning calorimetry ISO 75 (all parts), Plastics - Determination of temperature of deflection under load ISO 178, Plastics – Determination of flexural properties ¹ Under consideration.